REPORT NO. NADC-80174-30

USER'S MANUAL FOR THE BUOY-CABLE-BODY COMPUTER PROGRAM CABUOY

John P. Brett Sensors and Avionics Technology Directorate NAVAL AIR DEVELOPMENT CENTER Warminster, Pennsylvania 18974

FINAL REPORT
AIRTASK NO. A035-370A/001B/0F11-100-000
Work Unit No. ZU701

40

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

UTIC FILE COPY

 ∞

Prepared for NAVAL AIR SYSTEMS COMMAND Department of the Navy Washington, D. C. 20361

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the report. For example: Report No. NADC-78015-20 indicates the fifteenth Center report for the year 1978, and prepared by the Systems Directorate. The numerical codes are as follows:

CODE	OFFICE OR DIRECTORATE
00	Commander, Naval Air Development Center
01	Technical Director, Naval Air Development Center
02	Comptroller
10	Directorate Command Projects
20	Systems Directorate
30	Sensors & Avionics Technology Directorate
40	Communication & Navigation Technology Directorate
50	Software Computer Directorate
60	Aircraft & Crew Systems Technology Directorate
70	, Planning Assessment Resources
80	Engineering Support Group

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

APPROVED BY: E. Ganney DATE: 21 SEP 1981

DIRECTOR, SAID

1. Jan 18 18 18

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
NADC-80174-30	GD-A118428	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
USER MANUAL FOR THE BUOY-CABL COMPUTER PROGRAM CABUOY	_E-BODY	FINAL
		6. PERFORMING ORG, REPORT NUMBER
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(*)
John P. Brett		11-39
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
SENSORS AND AVIONICS TECHNOLO NAVAL AIR DEVELOPMENT CENTER WARMINSTER, PA 18974		ARTASK A035-370A/001B/ 0F11-100-000 ZU701
11. CONTROLLING OFFICE NAME AND ADDRESS NAVAL AIR SYSTEM COMMAND		12. REPORT DATE 21 Sept. 1981
DEPARTMENT OF THE NAVY WASHINGTON, D.C. 20361		13. NUMBER OF PAGES
14 MONITORING AGENCY NAME & ADDRESS(II dilleren	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		150. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	11 65 -	<u> </u>
Approved for Public Release; Distribution	h'i Inlimited	A MINI
Approved for Vabile Holease, bistribation	Ominica	
17. DISTRIBUTION STATEMENT (of the abetract entered	in Block 20, Il dillerent fro	m Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary as	nd Identify by block number)	
COMPUTER ANALYSIS		
SONOBUOY		
CABLE SYSTEMS		
20. ABSTRACT (Continue on reverse side if necessary an	d identify by black sumbors	
CABUOY is a Fortran IV program whi ocean deployed cable system in the time the NAVAIRDEVCEN modified version which can be modeled, explains in detail output data. An example is presented to	ch solves for the two domain. The present of CABUOY, describ the input data and pr	dimensional dynamic motions of an report, intended as a user's guide for es the various oceanographic systems rocedures required, and defines the

DD 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE 5/N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

=1227

رز ز

TABLE OF CONTENTS

LIST OF	TABLES
LIST OF	FIGURES
BACKGR	OUND
DISCUSS	SION
REFEREN	VCES
APPEND	x
Α	DEFINITION OF INPUT VARIABLES A-1
В	INPUT PARAMETERS
С	CABUOY OUTPUT VARIABLES
	C-1

Acce	ession For	
NTIS	GRA&I TAB	X
Unan	nounced	n'
Just	ification	
By		
Dist	ribution/	
Ava	llability (odes
	Avail and	or
Dist	Special	1
10	1 1	1
171	1 ,	- 1
L.		1

LIST OF TABLES

Title

Table

Page

ı	Input Parameters		18
11	Output Listing		20
	LIST OF FIGURES		
igure	Title		Page
1	CABUOY (Model Definition)		5
2	CABUOY (Data Input)		7
3	CABUOY (Surface Motion)		9
4	Surface Float Geometry		10
5	CABUOY (Surface Wave)		11
6	CABUOY (Time Control)		12
7	CABUOY (Stress-Strain)		14
8	CABUOY (Data Output)	ceession cor	
9	Parameters for Moored Buoy-Cable-Body System	0710 5.4 Channer noe Statt : 100	16
		7002 to 5 10 t	-
		11.75	

BACKGROUND

The motions of a cable suspended system deployed in an ocean environment has long been of interest to the oceanographic community. Programs which solve for the steady state cable configuration for systems deployed in a variable current profile have been in use for some time (reference 1,2). Several programs which generate the relative motions of suspended bodies as a result of a random surface forcing function are also in existence. In general, however, these programs model only one specific component of the deployed system, and approximate the remainder of the system. A program which could generate the dynamic motion of an arbitrary cable body system was required.

INTRODUCTION

CABUOY is a Fortran IV program developed for the Naval Air Development Center by the David Taylor Naval Ship Research and Development Center The program solves for the two-dimensional dynamic motions of a cable suspended system deployed in an ocean environment reference. Intended as an engineering tool, the program can model any combination of cable segments and attached bodies configured as either a towed, moored, or free drifting system. The positions of all bodies and the resultant cable tensions are calculated as functions of time. This time domain approach, though more costly in terms of execution time than the more common frequency domain method, was chosen because it allows for the solution of transient motions which may induce high tension loads in the cable.

The program employs a finite element analysis to model the cable-body system. The resultant differential equations are integrated using a Kutta-Merson routine which automatically reduces the integration time step until specified error criteria are met. This report will not deal further with the mathematics involved as these are completely described in reference (3). Rather, it will discuss the program input parameters and how they are manipulated to describe various systems, as well as the information available in the output data listing.

DISCUSSION

SYSTEM MODEL

CABUOY solves for the dynamic motions of moored, drifting or towed systems consisting of a surface float and any combination of cable segments and suspended bodies as illustrated in figure 1. Free drifting and towed cases are modeled in the program as moored systems where the bottom cable segment is defined to be massless and highly elastic. The towed system is further considered as a free floating system where the top of the cable is restricted from moving horizontally. The system is then "towed" by inputing a coplanar current velocity of magnitude equal to the tow velocity. The tensions measured in the fictitious cable segment of the drifting system model are generally less than 1 percent of the total system weight and have negligible effects on the dynamic solution.

CABUOY allows the user to arbitrarily define the system's initial position and velocity from which the dynamic data is calculated. Thus, it is possible to compute the time required for a system to reach an equilibrium condition from some initial configuration. Alternatively, the initial conditions can be automatically set to the steady-state values calculated by CABUOY. This minimizes system transients and is useful for generating long term dynamic data. Such versatility greatly increases the usefulness of the program.

A. Surface Float

Two classes of surface floats can be modeled by CABUOY: spar buoys, defined as buoys with large draft to diameter ratios, and spheroidal buoys whose limiting cases range from a thin disc to a spar. These two classes cover the spectrum of most commonly used surface floats.

During the dynamic calculation phase, CABUOY generates the coefficients for pitch, heave, and surge, and then calculates the response of the float to the surface wave forcing function. Due to the large amounts of computer time normally involved in these calculations, several alternative approximations have been included which reduce execution time at the expense of accuracy. When using these approximations, the surface float drag areas and added mass remain constant at the steady-state values or are calculated only at the end of each print interval. These approximations, though not accurate, are useful when evaluating the effects of subsurface assembly changes on system performance where many runs may be necessary.

The user also has the option of coupling the surface float directly to the ocean surface, eliminating the interaction between waves and float. This mode is useful in representing a system deployed off of a ship when the ship motion is known. The typical laboratory arrangement where an oscillating arm drives the top of the cable and the response of the lower unit is measured can also be simulated in this manner.

B. Cable

In CABUOY, the system suspension is divided into a number of rigid extensible segments whose end points are defined by the bodies suspended on the cable. To minimize the errors induced by the assumption of a rigid cable, long continuous cable length can be divided up into several segments. This is especially useful at the top of the system where the cable catenary is greatest.

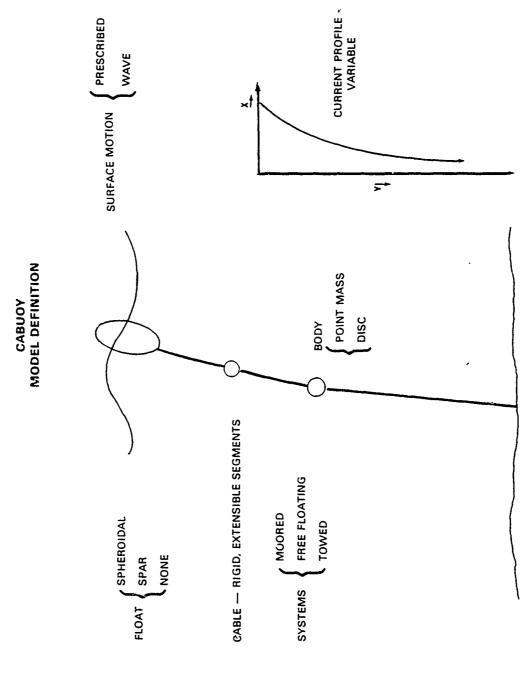


Figure 1 - CABUOY (Model Definition)

The stress-strain relationship for each cable segment is defined by:

T = C1*r C2 + CINT* + TREF

where

T = cable tension

C₁, C₂, are constants

٤ = strain

CINT = Internal Damping Coefficient

 $\dot{\hat{\epsilon}}$ = time rate of change of strain

TREF = constant

This equation allows CABUOY to model nonlinear cables, such as bungee cords, as well as linear materials such as steel and Kevlar, through the appropriate choice of coefficients.

C. Suspended Bodies

All suspended bodies are considered to be point masses of known drag area and virtual mass, with all forces acting at the center of gravity of the body Because of their wide use as vertical motion isolation in sonobuoy systems, a special routine has been included for flat discs which calculates the virtual mass as a function of the oscillation amplitude. For cases where several bodies are connected by short cable segments, such as in an instrumented line array, it is advantageous to input the bodies as a single element with a drag area equal to that of the entire array. This minimizes the number of cable segments and thus the execution time without significantly increasing the computational error.

ENVIRONMENT

The ocean environment utilized in CABUOY consists of a user-defined sea surface which decays exponentially with depth in conjunction with a variable current velocity profile. The ocean surface is generated by the summation of N sine waves, the amplitudes, frequencies, and phases of which may be defined by the user or by an internal wave generator. The current profile is input as a table of velocity versus depth. For the moored system, the depth of the last current velocity is defined to be the ocean bottom. For a free floating system, the current velocity at all depths greater than the maximum depth specified is equal to the last current velocity input.

DATA INPUT

CABUOY input data is arranged as illustrated in figure 2. Program variables are defined in appendix A, along with a data format guide. In general, data input is a straight forward process. However, because of the various systems CABUOY is designed to evaluate, several variables have multiple definitions, depending on which system is being analyzed. This section will review just those variables.

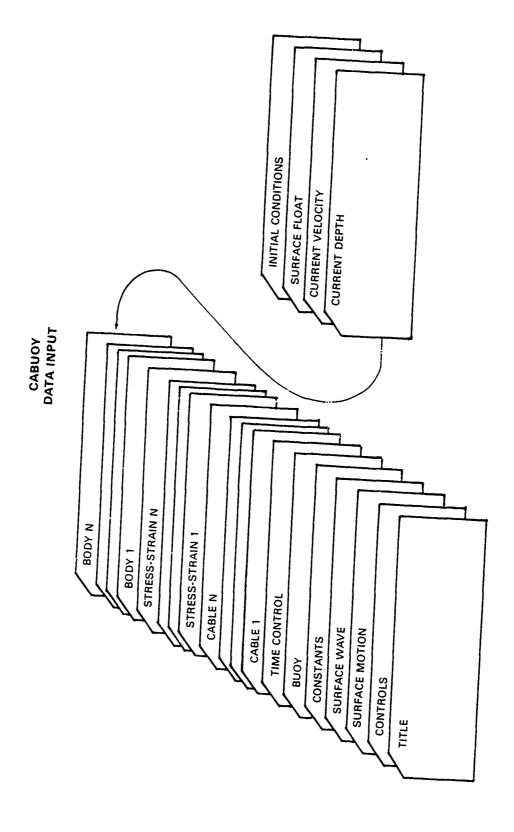


Figure 2 - CABUOY (Data Input)

A. FSM

The motion at the top of the cable is dependent on the variable FSM (figure 3). When FSM is less than 1000, the motion is defined by a summation of sine waves with a frequency, amplitude, and phase determined by the variables AXSM, AYSM, FSM, and FIDSM. This motion acts directly at the top of the cable system and eliminates the surface float from the calculations. For $1000 \le FSM < 2000$, the motion at the top—of the cable is set equal to the surface waves defined by FSW, ASW, and FIDSW. The surface float is again eliminated from the calculations.

In those cases where $2000 \le FSM < 2900$, the program considers the surface float to be a spar buoy, and calculates the response of the cable buoy system to the surface wave forcing function. The float is defined by considering AXSM (k) to be the cross sectional area of the buoy at a vertical distance AYSM (k) from the origin of the local buoy coordinate system. All inertia and coupling coefficients are calculated by the program. The origin of the float coordinate system can be anywhere the user defines, and AYSM should be negative or positive as required to define areas above and below the origin.

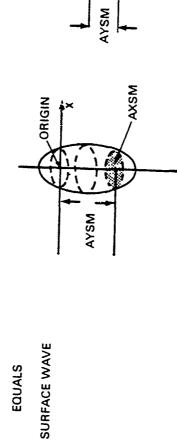
Where 2900≤ FSM < 3000, the buoy is considered to be an arbitrary shape defined in the same manner as a spar buoy. However, all inertia and coupling coefficients are defined by the user. For 3000 < FMS < 4000, the program considers the float to be a spheroid. AXSM (1) and AYSM (1) are considered to be the horizontal and vertical semi-axes respectfully. All inertia and coupling coefficients are again calculated by the program. The origin is considered to be at the geometric center of the float.

Additional data required to define the surface float as well as any subsurface package are input on separate cards. All required variables are defined in appendix A. Figure 4 illustrates the various forces and their geometric relationship to the float C_g It should be noted that the input variable TIY represents the force at the top of the cable. As this force is in a vertical up direction, the value enter for TIY is the negative of the actual value.

B. ASW

The surface wave forcing function is defined by ASW (figure 5). When ASW < 100° , the user inputs the amplitude, frequency, and phase of up to 20 sinusodial wave components which are then summed together to generate the surface wave. For $1000 \le \text{ASW} < 2000$, the program generates a random sea surface with wave components calculated from the Pierson-Moskowitz energy spectrum for a well developed sea. ASW (1) - 1000 is equal to the significant wave height, and FRSW (1) and FRSW (2) are the lower and upper frequency limits for the spectrum. All components are phase shifted relative to each other by 360/NSW degrees.

For the case where $2003 \le ASW \le 2008$, a standard random sea surface is generated using wave components defined by the program reference (4). ASW - 2000 is equal to the desired sea state.


C. Output Time Increments

The variables DT1, DT2, TINV1, and TOTT are used to control the output of the dynamic solution (figure 6). TINV1 defines an initial interval during which data is printed every DT1 seconds. This interval could be used to give limited information during a period where transient system motions are decaying For all times after TINV1 until TOTT, data is printed out every DT2 seconds. This would be where fine resolution is required to analyze long term motions. The time increments could be changed if the user was more interested in the initial system response, and how much time was required to reach steady state

ORIGIN

SURFACE MOTION CABUOY

3000 < FSM	SPHEROID
2000 < FSM < 3000	SPAR BUOY
1000< FSM < 2000	SURFACE MOTION
1000 × 1000	SURFACE MOTION

AXSM

FIDSM FSM AYSM VARIABLES: AXSM

Figure 3 - CABUOY (Surface Motion)

SINE WAVES

SUMMATION

OF.

EQUALS

SURFACE FLOAT GEOMETRY

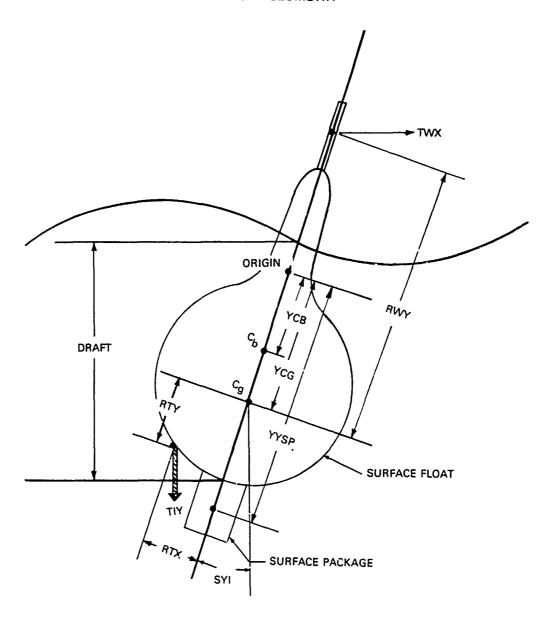
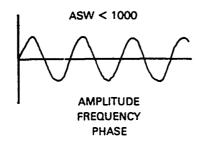
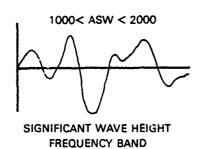




Figure 4 - Surface Flat Geometry

CABUOY SURFACE WAVE

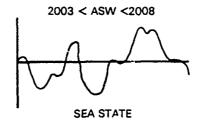
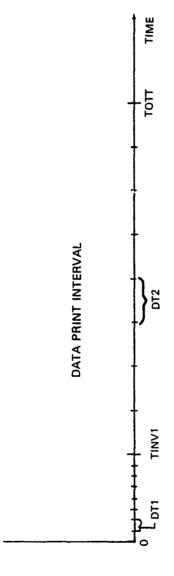



Figure 5 - CABUOY (Surface Wave)

VARIABLES
TIME CONTROLS — TINV1 DT1 TOTT DT2

Figure 6 - C, ... JOY (Time Control)

D. Cable Stress Versus Strain

CABUOY uses the generalized equation:

to relate cable stress and strain (figure 7). This equation allows the user to closely model the behavior of many varied cable materials. For a linearly elastic material, C2 = 1 and C1 = AE., where A is the cable cross sectional area and E is the elastic modulus. For a nonlinear material, the user can select values of C1 and C2 to closely model the material in the immediate area of interest. It should be noted that if TREF is non-zero, the cable length input should be at a tension of TREF. TMIN must also be defined to prevent the cable from being compressed during the dynamic phase.

E. Bodies

CABUOY considers each body to be a point mass with a fixed drag area. For those special cases where the body is a circular damping disc, a special routine is available which calculates the effective drag and added mass terms as a function of the oscillation amplitude. The user enables this routine by entering the negative of the physical drag area for the variable CDABX if the disc is oriented in the X-Z plane, or the variable CDABY if the disc is in the Y-Z plane. The remaining drag area would be entered normally.

DATA OUTPUT

Data output is formatted as illustrated in figure 8. First, all input data are listed. The program calculates and outputs the surface float constants required for the dynamic calculations based upon the draft estimate from the input data. Using these values as initial approximations, the program calculates the steady-state configuration of the system. These steady-state calculations use the finite element analysis techniques and iteration routines from the programs FF2E and MR3E, and considers the cables to be flexible extensible segments. The results are more accurate than would be obtainable using the rigid cable segments. The results from each iteration are printed out, and when a solution is reached the constants for the surface buoy are recomputed and output for the actual float draft. The exact surface float tilt is written, as well as the approximate float tilt used in the dynamic calculations. The approximate tilt may vary from the exact tilt as a result of the cable assumptions (rigid extensible segment) made for the dynamic phase.

The program then lists the steady-state configuration of the cable system. This represents the "exact" steady-state system configuration. By fitting the rigid CABUOY cable segments to the exact solution, the program generates a set of initial cable conditions which will be used in the dynamic calculations if required by the user. The program then calculates the cable motions and tensions and outputs these data as a function of time. Data are output for the surface wave (WAVE), surface float center of gravity (BUOY), top of the cable (Node O), and the bottom of each cable segment (Nodes 1,2,3 etc). No data are output for the bottom of the last cable segment, which is assumed to be fixed in space. While the program computes the dynamic motions, it also stores the percentage of the time that float draft and pitch exceed predefined limits. These percentages are then output at each print interval.

CABUOY EXAMPLE

To demonstrate the application of CABUOY for the solution of a real world problem, the moored system illustrated in figure 9 was evaluated and the input/output data listed in tables I and II. It is suggested that the example be closely studied and understood before the user attempts a problem of his own.

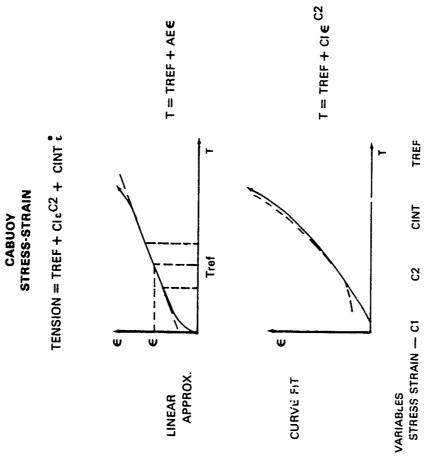


Figure 7 - CABUOY (Stress-Strain)

The second of th

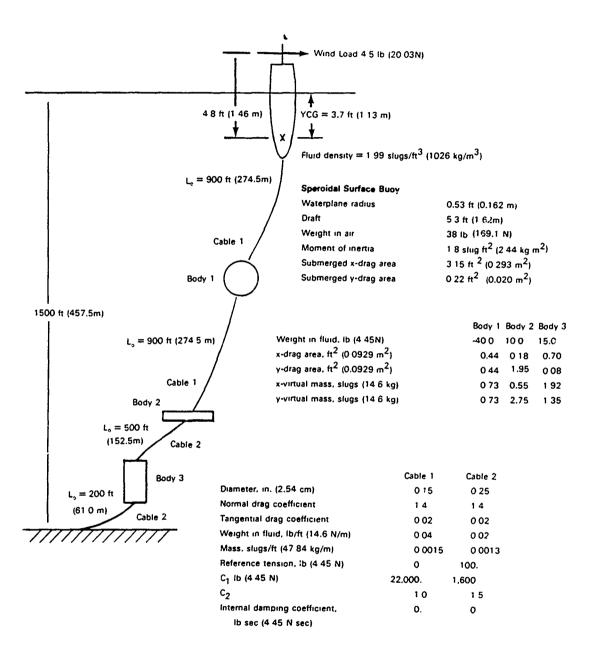
CABUOY DATA OUTPUT

1 ないかい からのない

INPUT PARAMETERS

POSITION (X,Y) STATIC SOLUTION

ANGLE (Ф)


TENSION

DYNAMIC SOLUTION ≡

WAVE BUOY NODE NODE

TIME | DT | POSITION | VELOCITY | ACCELERATION | TENSION | ANGLE | STRAIN

Figure 8 - CABUOY (Data Output)

Current Profile:	Depth	Current
	(ft)	(knots)
	(0.305 m)	(0 515 m/s)
	0	2.50
	500	1 30
	1000.	0 50
	1500.	0.50

Figure 9 - Parameters for Moored Buoy-Cable-Body System

Program Time Requirement

As noted in the original NSRDC report, CABUOY requires a large amount of memory and may take several minutes of CPU time to generate a solution. Generally, the number of surface waves or motions (NSW or NSM) and cable segments (NCAB), the stiffness of the cable segments (AE), the degree of surface float approximations (IBUOY), and the amount of output data required (TOTT) are the primary factors affecting the execution time. The following techniques will reduce the required computer time.

NSW/NSM - Reducing the number of surface wave components will reduce execution time. Generally, it is possible to evaluate systems response to a simple harmonic motion. Only in selected cases would the user evaluate system response to a random sea surface.

NCAB - Reducing the number of cable segments will directly reduce execution times (NCAB \geq 2). Generally, near surface cable segments should be divided into small lengths, while deep segments can be grouped into one long segment. Often a vertical hydrophone array can be approximated by one cable segment where cable drag area is defined to be equivalent to the array drag, with appreciable reductions in CPU time.

AE - Stiff cable segments (high equivalent spring constants) require longer execution time because of the smaller time increments used during the integrations. If possible, it would be more efficient to input a shorter, more elastic segment which will stretch to the original cable segment length. The effects of this change on the system response will have to be evaluated by the user.

IBUOY - Generally, the more often surface float constants have to be calculated, the more execution time is required. Therefore, unless the accuracy is required, the user can economize by setting IBUOY equal to 0 or 1. Setting IBUOY equal to -10 should be avoided except in cases where surface float motion is limited.

TOTT - Obviously, the more output data required, the longer the program will run. Execution is not affected by increasing DT1 or DT2, as the integration time step is determined by the computer, and this determines execution time. The only charges which change with DT1 and DT2 are those associated with line printers.

TABLE I INPUT PARAMETERS

Card	Col	FMT	Variable	Data				
1	1-3	13	NCASES	001				
2	1-80	20A4	TITLE	CABUOY-0	CASE 2 of N	ISRDC Repo	ort	
3	1-3	13	NSM	001				
	4-6	13	NSW	001				
	7-9	13	NCAB	005				
	10-12	13	NCUR	004				
	13-15	13	ITER	002				
	16-18	13	MTRC	000				
	19-21	13	IBUOY	-01				
	22-24	13	ISPAR	0				
4	1-10	F10.4	AXSM (I)	.530				
	11-20	F10.4	AYSM (I)	5.3				
	21-30	F10.4	FSM (I)	3500.				
	31-40	F10.4	FIDSM (I)	1.0				
5	1-10	F10.4	ASW (J)	7.5				
	11-20	F10.4	FRSW (J)	.10				
	21-30	F10.4	FIDSW (J)	0.0				
6	1-10	F10.4	RHO	1.99				
	11-20	F10.4	AMC	1.0				
	21-30	F10.4	AFAC	1.0				
	31-40	F10.4	ТВН	.0				
	41-50	F10.4	TBYMX	999999.				
7	1-10	F10.4	SUBM	0.0				
	11-20	F10.4	TWX	4.5				
	21-30	F10.4	TIY	-100.				
	31-40	F10.4	TMIN	0.				
8	1-10	F10.4	CDASPX	0.0				
	11-20	F10.4	CDASBX	6.3				
	21-30	F10.4	VSP	0.0				
	31-40	F10.4	SPXK	0.0				
	41-50	F10.4	SPYK	0.0				
•	51-60	F10.4	YYSP	0.0				
9	1-10	F10.4	TINVI	10.0				
	11-20	F10.4	DTI TOTT	0.1				
	21-30	F10.4	TOTT DT2	50.0 0.5				
10	31-40 1-0	F10.4 F10.2	FLC (K)	200.	700	900.	500.	200.
10	11-20	F10.2 F10.4	DCI (K)	.15	.15	.15	.25	.25
	21-30	F10.4	CDN (K)	1.4	1.4	1.4	1.4	1.4
	31-40	F10.4	CDT (K)	.02	.02	.02	.02	.02
	41-50	F10.4	WC (K)	.04	.02	.04	.02	.02
	51-60	F10.4 F10.6	CM (K)	.0015	.04	.0015	.0013	.0013
11	1-10	F10.0	C1 (K)	22000.	22000.	22000.	1600.	1600.
, ,	11-20	F10.4	C2 (K)	1.0	1.0	1.0	1.5	1.5
	21-30	F10.4	CINT (K)	0.	0.	0.	0.	0.
	31-40	F10.2	TREF (K)	0.	0. 0.	0. 0.	100.	100.
	41-50	F10.2	TENI (K)	0.	0. 0.	0. 0.	0.	0.
	51-60	F10.4	PHID (K)	9999.	0. 0.	0.	0. 0.	0.
	61-70	F10.4	XPI (K)	0.	0. 0.	0.	0.	0.
	71-80	F10.4	YPI (K)	0.	0.	0.	0.	0.
			Y 1				-	-

TABLE I
INPUT PARAMETERS (Cont'd)

12	1-10	F10.4	MADD (K)					
	11-20	F10.4	WBD (K)	0.0	-40.0	10.0	15.0	0.0
	21-30		CDABX (K)	0.	.44	.18	.7	0.0
		F10.4	CDABY (K)	Ο.	.44	1.95	.08	0.
	31-40	F10.4	XMBV (K)	0.	.73	.55	1.92	0.
4.5	41-50	F10.4	YMBV (K)	0.	.73	2.75	1.35	
13	1-10,	F10.4	YY(L)	0.	500.	1000.		0.
14	1-10,	F10.4	CCK (L)	2.5	1.3		1500.	
15	1-10	F10.4	CDASY	0.22	1.5	0.5	0.5	
	11-20	F10.4	WAST	38.0				
	21-30	F10.4	RWY	-4.8				
	31-40	F10.4	RTX	0.				
	41-50	F10.4	RTY	1.6				
	51-60	F10.4	YCG	3.7				
	61-70	F10.4	BINT					
16	1-10	F10.4	XSI	1.8				
	11-20	F10.4		7.5				
	21-30	F10.4	ZETI	0.				
	31-40		SYDI	999.				
		F10.4	XPSI	0.				
	41-50	F10.4	ZTPI	0.				
	51-60	F10.4	SYPDI	0.				
	61-70	F10.4	DFTLIM	5.5				
	71-80	F10.4	SYDLIM	25				

RGS0 56.2996

*KH FKP FKPS *0325 17.4783 -3.4572

OUTPUT LISTING TABLE II

ALTER CABUOT

CDAVIETSU) WILLB) HWYLFI) HIXLFI) HIYLFI) YCGIFI) INISLFIS**G**) XIIFI) ZEIAIIFI) SYIINEG) XVIIF/S) ZYVIIF/S) SYVIINS) -2200 36.0000 -4.8000 .0000 1.6000 3.7000 1.8000 7.5000 .0000 999.0000 .0000 4.7124 .0000 YYSP(FT) MAX TENCLB) BUDY CALC SPAR NUM .0000 99999,0000 -1.0000 ExP C2 1.0000 1.0000 1.5000 1.5000 SPAK SPAK .0000 C1(LB) 22000. 22000. 22000. 1600. 1600. ML(FT) WK(1/FT) 512.48 .0123 LISTING OF ENVIRONMENTAL AND CABLE-BUOY CHARACTERISTICS WILW/F) MISL/F) 7 REF (LW)
.0400 .001500 .00
.0400 .001500 .00
.0200 .001300 100,00
.0200 .001300 100,00 SUBMIFT) WIND LDILB) CDASPXIFTSOI CDASBXIFTSO) VSP (FTCU) .0000 6.3000 .0000 SUMFACE MOTION-FREGICPS) X-AIFT) Y-AIFT) PHASE LDEG) 3500.0000 .5300 5.3000 1.0000 LIMII PIICH# 25.0000 DEG PHEDICPS) AMPLIET) PHASE (U) . 100 CASE & OF NSHUC PEPONI DEPTHIFT) CURRIENT 1.9900 SL/CUF1 .0000 LB CANLE PHUPENTIES

1 LENITI DIAMILM) CDN
1 200.00 .1500 1.4000
2 700.00 .1500 1.4000
3 900.00 .2500 1.4000
5 200.00 .2500 1.4000 500.00 1000.00 1500.00 AH COLFF AHEA FAC T HINILB)
1.0300 1.0000 .00 GENEHAL CABLE CHARACTERISTICS SURFACE BUOY CHARACTERISTICS SURFACE BUOY PARAMETERS OCEAN CONDITIONS A-LOAD UN BOT WYR CURMENT PROFILE FLUID DENSITY SURFACE WAVE-

- no (20 100 14 1) 14 1

5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×	10ASX 1.1583	
1324, YHB 1324, 59583 3377, 61569 2981, 64564 2256, 49381 1972, 54489 1972, 54489 1972, 6467 1499, 6483 150, 2863 150, 2863 150, 2863 150, 4926 1499, 87414 1499, 87414 1499, 87414 1499, 87414	CDAFC CDA .5013 3.1	
410,34974 -210,34974 -210,34974 -320,50504 -101,3513,77331 -100,34965 -1513,77331 -100,255,9527 -2025,19382 -2025,19382 -2025,79310 -2025,	R650 56,5469	
1847 18-75940 19544-36-1001 19748-36-1001 19	FKPS -3.7271	
184 x x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FКР 58 20.1296	4
H116 13.64.10.1 13.64.10.1 13.64.10.1 14.64.10.1 14.64.10.1 14.64.10.1 14.64.10.1 14.64.10.1 14.66.1 1	FKS FKH •9600 •0558 EG	TVA= 4.7124
16.04 16.3.11.84.1 16.3.12.44.19.3 16.4.4.11.5.3 16.5.4.4.15.2 16.5.4.4.15.2 16.5.4.4.15.2 16.5.4.4.15.2 16.5.4.4.15.2 16.5.4.4.15.2 16.5.4.4.15.2 16.5.4.4.15.2 16.5.4.4.15.2 16.6.5.6.4 16.6.5.6.4 16.6.5.6.4 16.6.6.6.6 16.6.6.6 16.6.6.6 16.6.6.6 16.6.6.6 16.6.6.6 16.6.6.6 16.6.6	48	¥ 0000°
1177 -3742 00000 3 -1861 50000 1 -1961 50000 1 -578 43750 -578 43750 -198 3389 43750 -198 3389 43750 -198 3389 43750 -198 3389 438 -198 498 438 -198 498 458 -198 498 458 -198 498 458 -198 498 458 -198	.(CUFT) VC 3.1278 APPR SY14	AVA
11.5.10550 11.5.1		0P OF CABLE A= 5.3330
00000000000000000000000000000000000000	A(FT) A(FT) A(FT) .53 .6m -1	INITIAL VALUES AT TOP OF
Z	CONSTI DHAFT(FT) 5.3110 FCM-YC	INITIAL AA. b

-		STEA	DY-STATE CO	STEADY-STATE CONFIGURATION			
	1 j x •	40.45	5 IIY	-162.43	01MEC110N	• 2	1.00
	NODE	S HEF (FT)	S STRIFT)	A (FT)	1151)	TEN (L.B.)	PH15(0E6)
	٥	•	00.		5.3]	173.31	14.0%
	-	100.00	_	-35,30	46.77	169.75	
	-	0.002	~		182.13	106.45	
		200.00		£	182,13	166.45	
	~	550.00		•	440.10	256.55	- C - X 1
	v	900.00		•	651.97	148.37	
	v	900.0			16.159	174.57	
	~	1 150.00			946.00	163.03	
	~	1 400.00		•	1200.57	156.91	
	~	1800.00			1200.57	148.17	62.22
	*	2050.00			1323.63	145.98	
	3	2300.0			1477-14	143.96	24.64
	3	2 300 00		•	1437.14	139.14	12.21
	'n	2400.00			1469.36	138.57	73.14
	Ω	2500.00			1500.00	138.03	
_	s	2500.00	2576,83	•	1500.00	138.03	7.
_							
	X-COF	A-COMPUNENT OF					
	Y-00x	PONENT OF	F TENSION	38.05 LB			
		CABLE IN	CABLE INITIAL CONDITIONS	TIONS			
	NODE	PH1 (DEG)	TENGERS	XIFT	rift	(S/LET/S)	VV (617/2)
	-	28.6986	86		182.10		٥
	~	99.97				•	
	m	52.8103			_	•	•
	3	64.36		•		•	
	v	73.1	363 138,57	57 -2043.68	~	0000	• •
	-	INE INFOR	INF ORMAT TON				
						į	
		INITIAL THE INTERVALA TOTAL THE	AL THE	50.0000 SEC	1 NE 51	51EP# 51EP#	.1000 str .5000 Stc

IENS IONS
ANG
S S S
2
SYSTEM
CAHLE
CHPUTED

) FIP (0/5) STRAIN STP (1/5)	3.31 -4.15 SYPP= -71.05 D/55 .36 .006742.003309 .06 .00673003309 .00 .007404000054 .00 .093817 .000004 .00 .093817 .000004	3.31 -7.50 SYPP=	3.29 .17 SYPP# 97.93 0/55 08 .00639001313 06 .00535. 001742 .01 .007314000110 .00 .093453 .000011	3.27 5.60 SYPP= -9.12 D/35 -15.0006643-013523 -01.006761.002018 -01.007204001090 -00.093784000011 PCT T SYDLIM=	3.23 -1.19 SYPP= -106.10 0/55 .01 0006/07003105 .01 007112-000744 -00 093723000932 .00 09372300005	3.1/ -10.63 SYPP= -65.36 U/S5 .95 .006627 .004402 .04 .00629005201 .02 .007048000607 00 .09349600016 PCI I SYDLIM=	3,10 SYPP# -18,92 0/55 79 40064019-0004674 03 005813-,004946
) F1(nE0)	24.15 26.73 48.87 56.81 54.37 73.14	23.44 24.78 48.87 52.83 52.83 73,34	23.01 28.78 28.78 52.81 54.87	23.33 28.13 28.13 48.83 52.81 54.33	24.70 28.77 28.77 48.87 52.81 52.81 73.14	1.51 22.07 28.81 48.87 52.81 64.37 71.14	21.79 28.88 46.88 52.88
1that B)	DF= 5.86 148.32 153.41 163.00 145.98 138.57 ILIM= 65.	DF 5.40 171.47 144.81 164.53 165.53 165.53 17.51 138.57	0f= 5.03 175.86 143.12 150.91 145.48 138.57	10f= 4.70 142.75 148.75 158.50 148.51 148.57	0f# 4.44 134.01 147.55 150.46 155.91 138.57	0f = 4.28 146.23 137.03 155.06 145.82 145.82	0) = 4,31 141,45 127,88
1 YPI (F/55)	28.2401 0.005.82- 19.0094 11.134 19.0094 11.134	-1101.1- -17.67.19 -17.67.19 -0.119	-2894 12,2078 -17,1417 3,0112 3,115 3,156 1067	20.5041 20.5041 20.5041 20.5051 20.4051 30.4051	25.676 6.3990 25.676 -1211 1.2500 0183 PCI 1 UFI	-3.1826 -3.1826 2.7356 1.514.3 0.357	-1.0327 14.3957 -4.7026 4.5101
(88/1) day	-2.9596 -17.2760 -1.0766 -1.0766 -1.0766 -1.0766 -1.0766	13.42 H 13.42 H 13.42 H -4.06 75 -11472 -11472 -11472	-2.9467 -6.8027 16.7816 -3.5352 -9323 -0076	-2,9220 -2,3055 -17,0667 -1,9469 -1,9469 -1,9469	-2,8849 1,5163 -2,8017 -2,027 -2,0202 -3,58	-2.8358 -1047 -1044 -3.1441 -2.8951 -0536	-2.1750 -1.4715 5.3161 -5.2495
TP (F1/5)	4.7104 1.7557 1.7557 1.7393 0.0575 0.005 0.005 0.0021 0.0021	1,7046 1,921 1,8823 1,2942 1,2942 1,0035	4,66894 4,97455 4,3556 4,5560 4,00242 4,1014	1,4504 1,4341 1,9141 -,8254 -,8074 -,9845 -,0845	4.5914 2.4659 2.4659 2.686 3.686 1902 1902	3.9127 3.9127 3.9127 3.6771 .8914 .3293	5.4105 5.9114 5.9485 1.2740
XP (F 1/5)	.1364 2075 0917 -1.6154 0104 0015	-1.16%; -1.16%; -1.16%; -2.16%; -2.16%; -2.16%; -2.16%; -2.16%; -3.16%	-1.0183 -1.0232 -1.0232 -1.0232 -0.662 -0.662 -0.662	7610 -1.5105 -1.6664 -0978 1975 1976	-1.5073 -1.4749 -7.53354 -4.655 -6.6537 -6.0331 19 HEAN	-1.1550 -1.4050 -1.4050 -1.3031 -2.9624 -7038 -2005	-1.6435 -1.5142 -1.1182 -2.7157 -1.4064
Y (1.1)	5.27 5.04 182.17 645.84 1193.88	.26 .41 .41 .41 .41 .430 .44 .44 .44	.73 .46 182.46 645.40 1893.88 1430.48	1.21 182.40 645.98 1193.88 1430.48	1.64 6.13 182.51 646.04 1193.90 1430.48	2.14 1.14 1.16 1.16 1.16 1.17 1.17 1.17 1.17 1.17	2.62 1.67 6.67 183.1H 646.24
) X(FT)	7.50 7.49 7.49 6.81 -90.03 -1343.23 -1836.31 HEAN DR	7.50 7.66 7.66 1360.23 -1343.23 -1363.31	7.46 7.39 7.39 -40.33 -521.00 -1343.23 -1836.33 HEAN DR	7.40 7.26 6.61 -90.29 -1343.24 -1836.31 HEAN DK	7.31 7.11 6.44 -90.40 -621.17 -1343.27 -1836.31 HEAN DR	7.18 6.96 6.36 02.71 621.26 134.33 1836.31 MCAN DRJ	7.03 6.82 6.61 -41.01
DTISEC	.000002 .000002 .000002 .000002 .000002 .000002 .000002	.012500 .012500 .012500 .012500 .012500 .012500	.012500 .012500 .012500 .012500 .012500 .012500	.012500 .012500 .012500 .012500 .012500 .012500	.006250 .006250 .006250 .006250 .006250 .006250	.006250 .006250 .006250 .006250 .006250 .006250 .006250	.012500 .012500 .012500 .012500
1 (SEC)	1000 1000 1000 1000 1000 1000	2000 2000 2000 2000 2000 2000 2000 200	1000 1000 1000 1000 1000 1000 1000	00001. 00001. 00001. 00001. VATS		00000 00000 00000 00000 00000 00000 0000	70000
RUM	WAVE BUDY 0 1 2 2 4	#AVE #AVE 0004 1004 1304 1304 1304	HAVE BUOY 0 1 2 3	HUUY HUUY 1 1 2 3 4 4 4 4	HAVE BUOY O O D D D D D	BUCY BUCY BUCY BUCY BUCY BUCY BUCY BUCY	AAVE BUUY 0 1

213	7 0/55 273 651 651 651 663 663 134	4 D/SS 516 708 473 473 249	8 0/55 213 861 665 645 643 413	2 0/55 358 339 5578 5677 637	5 0/55 502 847 002 928	46 D/SS 3409 0476 1919 1915 1294	1 U/SS 802 829 677 529 137
.093412002213 .083451000060 DLIM= .00	SYPP -42.27 D/ .005.09-002823 .005559002851 .005870002851 .093154002963 .093441009	3 5YPP= -6.04 D/55 0.005163 .00351c 0.00523100370H 0.00523100370H 0.0052816003831 1.0083423000249	.86 SYPP 108,48 B/SS .54 005701 .004213 .07 004524001861 .04 005574001685 .01 09238400482 SYDLIM=	70 SYPP= 154.32 D/s 37 005739-003358 36 006467 001339 35 006467-001578 31 091848-005907 31 083338-000637 57DLIM=	SYPP= 105.65 U/S 0005342-000928 0005542-000928 0005542-000928 0005542-000928 0005542-000928 0005542-000928 0005542-0009	/PP# 43.	SYPP# -5.31 U/ .005747 .001802 .005233 .000229 .005231 .000577 .005999001337 .00114*
95.	200000	00000 P	2.82 -15.66 S -01 -01 -01 -01 -01 -01 -01 -01 -01 -01	-1.23 s -0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	2.57 12.52 S 33 .04 .06 .02 .1	24.2 19.45 -54.0 -54.0 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0	21.76 S 21.76 S -59 06 03 03 1.7 SYOL
64,37 73,14 04 PCT	20.25 28.96 48.86 52.82 64.37 73.14	246 18.34 - 29.05 48.89 52.82 64.37 73.14	2.76 10.43 - 29.12 48.89 52.83 64.37 73.14	3.04 15.54 29.15 48.90 52.83 64.37 73.14	3,32 10,15 29,13 48,90 52,84 64,37 73,14	3.59 17.82 24.09 48.91 52.84 52.84 73.14	3.84 17.93 29.03 48.91 52.85 64.37 73.14
145.68 138.57 IMm 22.	OF 4.48 119.00 122.30 151.14 145.49 138.56 LIM* 19.	0f = 4.64 114.04 115.07 148.14 145.24 138.55 LIM 17.	0f = 4.70 125.43 108.33 144.93 144.93 138.53	OF= 4.67 126.06 107.96 140.95 144.54 138.49 LIM* 14.	117.52 117.52 112.08 138.03 144.07 138.44	Fm 4.39 119.05 114.64 136.72 143.53 138.36 188.11	DF 4.19 126.43 115.12 137.08 142.93 138.26 LIMB 11.
1.7507 .0623 PCI T DFTL	-1.2100 -4.2451 (12.8968 4,5096 2.0322 0.0981	-1.3824 -12.00.3 0 5.8944 4.6527 2.4065 -1437 PCI T DFTL	-1,5498 (-13,6339 4,2441 2,7541 2,7541 PCT 1 OFTI	-9.1008 -9.1008 1.9523 3.0049 -2662 PC1 T DF1	-1.8670 -10.8664 DI 4.7875 6348 <.9881 -3427 PCI I DFIL	-2.0163 -3.9777 b 3.6813 -1.4779 -2.5901 -4.600	-2.1573 5.8266 D -3.9525 -1.9522 1.4891 5107 PC1 T OF TL
-3.1808 -1019 -3.39	-2.7023 -1288 -8.8795 -5.2406 -3.6964 -1053	-2.6184 -5.3709 -4.3218 -2.47	-2.5232 -4.7244 10.3480 -4.9192 -3409 22.14	-6.5542 -6.5542 -6.5542 -2.1814 -5.2748 21.58	-3.9178 -3.9178 -3.9178 -45.0.6- -5.130	-2.1663 -3.2437 -3.4114 1.7549 -4.0494 -7.165	-2.0280 -2.2814 2.5942 1.211 -2.550 -2.8485 -2.650
.4922 .0142 PITCH=	4,3009 6,3159 6,3159 3,4198 1,7305 6819 6819	4.1672 5.3638 5.3638 4.6524 2.1852 9048 PICH*	4.0158 4.3013 4.3013 4.3013 7.6436 1.0531 PICHE	3.8460 3.4637 3.4637 2.7490 2.9668 1.4525 PICHE	3.6575 2.4206 2.4206 2.5492 3.0237 1.7551 1.7551	3.4510 1.6013 1.6013 3.1260 2.9017 2.0372 PITCH#	3.2275 1.7275 1.7275 3.0553 2.7713 2.2629 1.901
-1.0059 0081 94 MEAN	-1,9258 -1,5877 -1,1111 -2,9268 -1,9378 -1,3481 -0,0214	-2.2004 -1.5741 9998 -3.7819 -2.4644 -1.7687	-2.4657 -1.8372 -1.3998 -2.9918 -2.9918 -2.116 -0709	-2.7230 -2.4313 -2.4031 -4.3059 -3.3593 -2.7249 -2.105	-2.9715 -3.0239 -3.3736 -2.1152 -3.4170 -3.473 -1621 79 HEAN	-3.2040 -3.4186 -3.4702 -2.4318 -3.2045 -3.7076 -2.270	-3.433 -3.6988 -4.3064 -2.6564 -3.1166 -4.006 -3053
1195. 6 1430.48 7= 4.	3.07 2.25 7.55 183.48 646.39 1194.02 1430.48	3.50 2.84 2.84 183.69 646.59 1194.10	3.92 3.32 4.62 134.34 646.83 1194.20 14.30.49	4,33 1,33 1,64,7 1,430,50 1,430,50	4,73 4,00 9,30 184,94 647,41 1194,49 1430,51	7.11 4.20 185.22 185.22 194.68 1430.52	5.46 4.36 4.66 1145.54 647.99 1194.90 1430.53
-1343.41 -1836.31 MEAN DRAP	0.65 0.66 0.09 -91.28 -621.54 -1343.53 -1836.31 MEAN DRAI	6.63 6.50 5.99 -91.62 -621.76 -1343.632 HEAN DRA	6.39 6.34 -91.99 -622.03 -1343.88 -1936.32	6.12 6.12 5.69 -92.28 -622.35 -1344.33 HEAN DRA	5.82 5.85 5.40 -92.49 -622.70 -1344.43 -1836.34 MEAN DRA	5.49 5.55 5.53 -92.73 -02.03 -134.78 -1836.36 HEAN DRA	5.14 5.17 5.17 -4.61 -623.35 -1345.17 -1436.39 HEAN DRA
.012500 .012500 ISTICS	.025000 .025000 .025000 .025000 .025000 .025000	.025000 .025000 .025000 .025000 .025000	.025000 .025000 .025000 .025000 .025000 .025000	.025000 .025000 .025000 .025000 .025000	.025000 .025000 .025000 .025000 .025000	.025000 .025000 .025000 .025000 .025000 .025000	.025000 .025000 .025000 .025000 .025000
7000 7000 100 STAT	88000 88000 88000 88000 8000 8000 8000	1415 0006 0006 0006 0006	1.0000 1.0000 1.0000 1.0000 1.0000 5.7AT	1.1000 1.1000 1.1000 1.1000 1.1000 1.1000	1.2000 1.2000 1.2000 1.2000 1.2000	1.3000 1.3000 1.3000 1.3000 1.3000	1000 1000 1000 1000 1000 1000
7,3	HAVE BUOY 1 1 3	HAVE BUDY A A B B	#AVE BUOY 1004 13.22	######################################	# > 0 = N = 1	#AVE # 1004 # 1004	HAVE BUUY 0 0 1 2 3

1,000,000,000,000,000,000,000,000,000,0	v	.0		, a
1.500 0.25500 0.11 0.10 0.11 0.10 0.11 0.1	S	25. C. S.	255 255 255 257 173 261 173 173 174 175 175 175 175 175 175 175 175 175 175	1 0 0 5 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1
1.500 0.25500 0.11 0.10 0.11 0.10 0.11 0.1	4.0000.	000000 + 000000 + 000000 + 000000 + 000000	200000 NO.	## 100000 ## 10000000000000000000000000
1.500 0.25500 0.11 0.10 0.11 0.10 0.11 0.1	5651- 5276 6300- 8762- 2800-	# # # # # # # # # # # # # # # # # # #		5520 5520 5520 5520 65320 8 55717 6501- 6501- 8 174-
1.500 0.25500 0.11 0.10 0.11 0.10 0.11 0.1	20000 A		100000 X X 200000 X X 200000 X X X X X X	
1,000 0.5500 0.5	27.0000		23	N - N -
1,000 0,050 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,00		224 923 923 923 933 933 933 933 933 943 952 953 953 953 953 953 953 953 953 953 953	Š Š	Ų Ų
1.5000 0.5500 0.17 0.10 0.1	25 25 25 25 25 25 25 25 25 25 25 25 25 2	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22. 28. 28. 57. 57. 57. 56. 56. 56. 57. 57. 58. 58. 58. 58. 58. 58. 58. 58. 58. 58	28. 28. 28. 54. 54. 54. 54. 54. 54. 54. 54. 54. 54
1,000				04444 0444 0444 0444 0444 04444 04444 04444 04444 04444 04444 04444 04444 04444 04444 0444 04444 0444 04444 04444 04444 04444 04444 04444 04444 04444 0444 0444 04444 04444 04444 04444 04444 04444 04444 04444 04444 04444 04446 04444 04444 04444 04444 04444 04444 04444 04444 04444 04444 04
1,000				
1,5000 025000 1,17	891 702 0 882 883 813 849 0f 1L	105 024 024 715 715 715 715 0716 679 614 891 314 0871		743 141 U 146 146 1416 1416 1416 1416 169 161
1.5000 .025000	2.7. 9.1. 9.1. 9.1.	77 - 100 or no	7- 7-1 - 7-1 - 7	7.4 03.4 1 1 2 2 3 1 1 1 1 2 4 1 1 1 1 2 4 1 1 1 1 1 1 1 1
1.5000				
1.5000	20 1005	- 1 1 1 2 1 7 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1		
1.5000 .025000	•		•	
1.5000 .025000	2.2 2.2 2.2 2.2 1.2 1.2 1.2	200000	14. 14. 14. 14. 14. 14. 14. 14. 14. 14.	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1.5000 .025000	333 74 75 75 75 75 75 75 75 75 75 75 75 75 75	HEAN HEAN HEAN HEAN HEAN HEAN HEAN HEAN		1997 1997 1997 1997 1997 1997 1997 1997
1.5000 .025000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	######################################	4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 L L L L L L L L L L L L L L L L L L L
1.5000 .025000 4.76 1.5000 .025000 -0.23.66 1.5000 .025000 -0.23.66 1.5000 .025000 -1345.56 1.5000 .025000 -1345.56 1.5000 .025000 -1345.61 1.6000 .025000 -2.33.61 1.6000 .025000 -2.33.61 1.6000 .025000 -2.33.61 1.6000 .025000 -2.33.61 1.6000 .025000 -2.33.61 1.6000 .025000 -2.33.61 1.7000 .025000 -2.33.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -3.43.61 1.7000 .025000 -3.43.61 1.7000 .025000 -3.43.61 1.7000 .025000 -3.43.61 1.7000 .025000 -3.43.61 1.7000 .025000 -3.43.62 1.7000 .02	\$	ă ă	ທູ້ ຫຼື	່ທຸ ທຸ
1.5000 .025000 4.76 1.5000 .025000 -0.23.66 1.5000 .025000 -0.23.66 1.5000 .025000 -1345.56 1.5000 .025000 -1345.56 1.5000 .025000 -1345.61 1.6000 .025000 -2.33.61 1.6000 .025000 -2.33.61 1.6000 .025000 -2.33.61 1.6000 .025000 -2.33.61 1.6000 .025000 -2.33.61 1.6000 .025000 -2.33.61 1.7000 .025000 -2.33.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -2.23.61 1.7000 .025000 -3.43.61 1.7000 .025000 -3.43.61 1.7000 .025000 -3.43.61 1.7000 .025000 -3.43.61 1.7000 .025000 -3.43.61 1.7000 .025000 -3.43.62 1.7000 .02	185.64 195.64 195.14	2014 20	0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1.5000 .025000 .0155000 .0155000 .0250	1 1 1	*		
1.5000 .025000 .0155000 .0155000 .0250	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NATURE OF TONDER		N. 25 6 9 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
11.00000000000000000000000000000000000	777	177 177	177 177	777
11.00000000000000000000000000000000000	255000 255000 2550000 2550000 2550000 1150000	711.55000	11.05.000 11.05.000 12.05.000 12.05.000 13.05.	11 CS
	000000			
	3	2000 COLLEGE C		
	#AVE BUDY 0 1 1 3 4	EX EXPONDED TO A CO.	3 3	E T T T T T T T T T T T T T T T T T T T

REFERENCES

- "Analysis Of The Two Dimensional Steady State Behavior Of Extensible Free-Floating Cable Systems," Henry T. Wang and Thomas L. Moran, NSRDC Report 3721, Oct 1971
- 2. "Effect Of Nonplanar Current Profiles On The Configuration Of Moored Cable Systems," Henry T. Wang, NSRDC Report 3692, Oct 1971
- "A Fortran IV Computer Program For The Time Domain Analysis Of The Two Dimensional Dynamic Motions of General Buoy-Cable-Body Systems," Henry T. Wang, NSRDC Report 77-0046, Jun 1977
- 4. "Computer Generated Random Sea Surfaces For Use With The Program CARBUOY," JohnBrett, NADC-77271-20, 30 Sep 1977

APPENDIX A

DEFINITION OF INPUT VARIABLES

NCASES	-	Number of cases to be run. One case is defined by data cards 2 through 17. NCASES \geq 1
TITLE		Title of data case. Title is printed on output for identification.
NSM		Number of surface motion components. For 1000 ≤ FMS (1) < 2000
		Surface motion = Surface Wave, NSM is automatically set equal to NSW. 1 ≤ NSM ≤ 20
NSW		Number of surface wave components. 1 ≤ NSW ≤ 20
NCAB		Number of cable segments. $2 \le NCAB \le 50$
NCUR	_	Number of current profile data points. 2 ≤ NCUR ≤ 10
ITER	- ITER	= 0 prescribed initial steady state conditions
		= 1 free floating cable system
		= 2 moored cable with given length in given depth
		= 3 towed cable system
		= 4 iteration scheme to be programmed by user
MTRC	- MTRC	≤ 0 if input data are entered in English units.
		≥ 1 if input data are entered in metric units.
IBUOY	- IBUOY	< - 10 Surface buoy drag areas and added masses remain at constant values, and
		displaced volume is equal to the draft times the steady-state waterplane
		area. < - 1 Surface buoy drag areas and added masses remain at constant values
		corresponding to the steady-stae draft.
		= 0 Surface buoy drag areas and added masses are updated at the end of each
		print interval.
		< 1 Surface buoy drag areas and added masses are updated continuously as a
		function of buoy submergence.
ISPAR		Degree of polynomial used to approximate variation of cross sectional area of a spar
		buoy. ISPAR ≤ NSM-1
)	1	
AXSM		
AYSM	}	FSM (1) \leq 1000 Amplitude, frequency and phase of surface motion which is
FSM		defined by the equations:
FIDSM)	1	
		NSM X
		$X_{sm} = \Sigma$ AXSM (k) * COS (-2 π *FSM (k) *t + FIDSM (k) * π /180)
		NSM Ysm = Σ -AYSM (K) *SIN (-2 π *FSM (k) * t + FIDSM (k) * π /180)
		k=1
		(ft., hz & deg or m, hz & deg)
		1000 ≤ FSM (1) < 2000 = Prescribed surface motion components are set equal to
		the surface wave components by setting AXSM $(k) = AYSM (k) = ASW (k)$,
		FSM(k) = FRSW(k), $FIDSM(k) = FIDSW(k)$ and $NSM = NSW$.
		$2000 \le \text{FSM (1)} < 2900$ - Surface buoy is considered to be a spar buoy. Program
		calculates the mertia and forcing coefficients. AXSM (k) is the cross-
		sectional area of the buoy at a vertical distance AYSM (k) from the origin of

APPENDIX A (Cont'd)

the local buoy coordinate system. AYSM (NSM)-AYSM (1) is the total length of the buoy. FIDSM (1) is the added mass coefficient for surge, Ks. FIDSM (2) is the ratio $\alpha = |\text{sw}/(\pi)r_{\text{tw}}^4/4)$, where lsw is the moment of inertia of the water plan area and r_{tw} is the radius of the water plane cross section. For a circular section spar buoy, $K_{\text{S}} = \alpha = 1$. These values are automatically preset if FIDSM (1) = FIDCM (1)=0. All inertia and forcing coefficients are calculated by the program.

- 2900 ≤ FSM (1) < 3000 Surface buoy is considered to be an arbitrary shape. Inertia and forcing coefficients are input as data, AXSM (k), AYSM (k), FSM (k) and FIDSM (k) are defined as for a spar buoy.
- 3000 ≤ FSM < 4000 Surface buoy is considered to be a spheroid. AXSM (1) and AYSM (1) are the horizontal and vertical semi-axes. All other variables should be set equal to 0.

ASW FRSW FIDSW

ASW < 1000, amplitude, frequency and phase of surface wave components, which are defined by the equation:

 $X_{SW} = \sum_{k=1}^{NSW} \sum_{k=1}^{NSW} (k) * COS (-2\pi^*FRSW (k) * t + FIDSW (k) * \pi/180).$ $Y_{SW} = \sum_{k=1}^{NSW} \sum_{k=1}^{NSW} (k) * SIN (-2\pi^*FRSW (k) * t + FIDSW (k) * \pi/180).$

1000 ≤ ASW (1) < 2000 sea surface is generated using the Pierson-Moskowitz sea spectrum. ASW (1) -1000 is the significant wave height, and FRSW (1) and FRSW (2) are the lower and upper frequencies of the spectrum. Wave components are phase shifted by 360/NSW degrees, with FIDSW (1) being the phase of the lowest frequency component.

(ft, Hz & deg or m, Hz & deg).

2003 ≤ ASW (1) ≤ 2008 A standardized random sea surface is generated using internally generated wave components.
ASW (1) -2000. is the desired sea state. Sea states 3 through 8 are available.

RHO Fluid density (slugs/ft³ or kg/m³)

AMC Added mass coefficient for cable. AMC = 1.0 for round cable

AFAC Cross-sectional correction factor. AFAC = 1.0 for cylindrical cable. AFAC = cable

cross-sectional area / $(\pi d^2/4)$ for non-round cable.

TBH Applied force on lower weight in x- direction (lbs or N)

TBYMX Maximum absolute value of tension in cable just below buoy. For buoy-cable

systems, set TBYMX = 99999. (lbs or N)

SUBM Depth at which current velocity is measured for surface float drag calculations

(ft. or m).

TWX Horizontal force acting at the top of the cable (lb or N).

For cases with a float, TWX represents the wind loading.

TIY Vertical component of tension at top of cable (lb or N).

APPENDIX A (Cont'd)

	For cases with a float, T!Y =-(steady-state buoyancy of float).
TMIN	Minimum tension which can be supported by cable, (lb or N).
CDASPX	Drag area of surface package in x direction (ft ² or M ²).
CDASBX	Drag area of surface buoy, excluding surface package, in x direction (ft^2 or M^2).
VSP	Volume of surface package (ft ³ or M ³).
SPXK	Surface package added mass coefficient for surge.
SPYK	Surface package added mass coefficient for heave.
YYSP	Vertical distance of center of buoyancy of surface package measured from the origin
	of the local buoy coordinates (ft or M).
TINV1	Initial print time interval (sec).
DT1	Print time step during initial interval (sec).
TOTT	Total time for which dynamic calculations are desired (sec).
DT2	Print time step during final interval (sec).
FLC	Length of cable segment (ft or m).
DCI	Diameter of cable segment (in. or cm).
CDN	Normal drag coefficient of cable segment.
CDT	Tangential drag coefficient of cable segment.
WC	Weight in fluid of the cable segment at the reference cable tension (lbs/ft or n/m).
CM)	Mass of cable segment at the reference cable tension (slugs/ft or kg/m).
C1	The stress-strain curve for the segment is defined by the
C2 }	equation
CINT)	Tension = TREF + $C1*s^{c2}$ + CINT * \dot{s}
TREF	For linearly elastic materials, C1 = AE and C2 = 1.
	For free floating and towed cases (ITER = 1 or 3) the last cable segment connecting
	the lower weight to the ocean bottom is fictitious. In these cases, C1 = DCI = CDN =
	CDT = WC = CM = CINT = 0, $FLC = 2 *FLC (NCAB - 1)$ and $C2 = 1$.
1	These values are set automatically. Blank cards should be inserted for data.
TENI	PHID < 360 TENI is the initial value of cable tension (lbs or N).
PHID	PHID is initial value of cable tilt (Φ) (deg).
,	PHID > 360 Initial values of tension and cable tilt are set equal to steady-state
	values calculated by the program. In this case, 0 can be entered for TENI.
XPI	Initial value of x (ft/sec or m/sec).
YPI	Initial value of ŷ (ft/sec or m/sec).
WBD	Weight in fluid of body (lb or N).
CDABX	Drag area of body in x direction (ft^2 or m^2).
CDABY	Drag area of body in y direction (ft ² or m ²).
XMBV	Virtual mass of body in x direction (slugs or kg).
YMBV	Virtual mass of body in Y direction (slugs or kg).
111101	If CDABX is negative, the program considers the body to be a circular disk with plane
	perpendicular to the x-axis, and calculates the drag and added mass, using
	CDABX as the actual drag area and XMBV as the actual mass of the disk.
	CDABY and YMBV retain their original definitions. Similar remarks apply if CDABY is
	negative, except that the plane of the disk is now perpendicular to the Y axis.
	negative, except that the plane of the disk is now perpendicular to the 1 sxis.

APPENDIX A (Cont'd)

YY	Depth of current velocity data point (ft or m).
	For moored case, YY (NCUR) is the ocean bottom.
CCK	Velocity of current at depth YY (kts or m/sec).
CDASY	Drag ⊴rea of surface buoy in Y direction (ft ² or m ²).
WAST	Weight in air of buoy and surface package (lb or N).
RWY	Vertical distance of wind loading center of pressure from buoy center of gravity (YCG) (ft or m).
RTX	Distance of cable attachment point from YCG in x direction (ft or m).
RTY	Distance of cable attachment point from YCG in y direction (ft or m).
YCG	Vertical distance of center of gravity of buoy and surface package measured from the origin of the local buoy coordinate system (ft or m).
BINT	Moment of inertia of buoy and surface package about YCG (slug ft ² or km ²).
XSI	Initial values of x.ζ,ψ), where ζ is the vertical displacement of the float center
ZETI }	of gravity from its equilibrium position (ft, ft & deg or m, m & deg).
SYDI)	For SYDI \geq 360, the program sets the initial values for buoy inclination, draft and vertical velocity equal to the steady-state values previously calculated by the program. This will minimize transient dynamic motions of the surface body.
XPSI	Initial values of (x, ζ,ψ), (ft/sec, ft/sec, Deg/sec or m/sec, m/sec, deg/sec).
ZTPI }	
SYPDI /	
DFTLIM	Limiting value of draft and pitch for which the program calculates the percent of
SYDLIM	time these values are exceeded.

(The following variables are described in NSRDC/SPD-0633-02)

AKZ	Added mass coefficient in heave for arbitrary buoy.
AXP	$A_{\xi\psi}/ ho VL$ for arbitrary buoy
APP	(A _{ψų} -BINT)/p∨L ² for arbitrary buoy
AFKX	FKx/pVx of for arbitary buoy
4FKZ	FKy/pVy for arbitrary buoy
AFKP	FK/pVLx

APPENDIX B

CABUOY INPUT PARAMETERS DATA FORMAT GUIDE

Card	Col	FMT	Variable
1	1-3	13	NCASES
2	1-80	20A4	TITLE
3	1-3	13	NSM
	4-6	13	NS\V
	7-9	13	NCAB
	10-12	13	NCUR
	13-15	13	ITER
	16-18	13	MTRC
	19-21	13	IBUOY
	22-24	13	ISPAR
4	1-10	F10.4	AXSM (I)
	11-20	F10.4	AYSM (I)
	21-30	F10.4	FSM (I)
	31-40	F10.4	FIDSM (I)
5	1-10	F10.4	ASW (J)
	11-20	F10.4	FRSW (J)
	21-30	F10.4	FIDSW (J
6	1-10	F10.4	RHO
	11-20	F10.4	AMC
	21-30	F10.4	AFAC
	31-40	F10.4	TBH
_	41-50	F10.4	TBYMX
7	1-10	F10.4	SUBM
	11-20	F10.4	TWX
	21-30	F10.4	TIY
_	31-40	F10.4	TMIN
8	1-10	F10.4	CDASPX
	11-20	F10.4	CDASBX
	21-30	F10.4	VSP
	31-40	F10.4	SPXK
	41-50	F10 4	SPYK
_	51-60	F10.4	YYSP
9	1-10	F10.4	TINVI
	11-20	F10.4	DT1
	21-30	F10.4	TOTT
4.0	31-40	F10.4	DT2
10	1-10	F10.2	FLC (K)
	11-20	F10.4	DCI (K)
	21-30	F10.4	CDN (K)
	31-40	F10.4	CDT (K)
	41-50	F10.4	WC (K)
	51-60	F10.6	CM (K)

1.00

APPENDIX B (Cont'd) CABUOY INPUT PARAMETERS DATA FORMAT GUIDE

1-10	F10.0	C1 (K)
11-20	F10.4	C2 (K)
21-30	F10.4	CINT (K)
31-40	F10.2	TREF (K)
41-50	F10.2	TENI (K)
51-60	F10.4	PHID (K)
61-70	F10.4	XPI (K)
71-80	F10.4	YPI (K)
1-10	F10.4	WBD (K)
11-20	F10.4	CDABX (K)
21-30	F10.4	CDABY (K)
31-40	F10.4	XMBV (K)
41-50	F10.4	YMBV (K)
1-10,	F10.4	YY (L)
1-10,	F10.4	CCK (L)
1-10	F10.4	CDASY
11-20	F10.4	WAST
21-30	F10.4	RWY
31-40	F10.4	RTX
41-50	F10.4	RTY
51-60	F10.4	YCG
61-70	F10.4	BINT
1-10	F10.4	XSI
11-20	F10.4	ZETI
21-30	F10.4	SYDI
31-40	F10.4	XPSI
41-50	F10.4	ZTPI
51-60	F10.4	SYPDI
61-70	F10.4	DFTLIM
71-80	F10.4	SYDLIM
	11-20 21-30 31-40 41-50 51-60 61-70 71-80 1-10 11-20 21-30 31-40 41-50 1-10, 1-10 11-20 21-30 31-40 41-50 51-60 61-70 11-20 21-30 31-40 41-50 51-60 61-70	11-20 F10.4 21-30 F10.4 31-40 F10.2 41-50 F10.2 51-60 F10.4 61-70 F10.4 71-80 F10.4 1-10 F10.4 21-30 F10.4 31-40 F10.4 1-10, F10.4 1-10, F10.4 11-20 F10.4 21-30 F10.4 31-40 F10.4 51-60 F10.4 11-20 F10.4 51-60 F10.4 31-40 F10.4 41-50 F10.4 31-40 F10.4 41-50 F10.4 51-60 F10.4 51-60 F10.4 51-60 F10.4 51-60 F10.4 61-70 F10.4

This card is only needed if 2900< FSM (1) < 3000

17	1-10	F10.4	AKZ
	11-20	F10.4	AXP
	21-30	F10.4	APP
	31-40	F10.4	AFKX
	41-50	F10.4	AFKZ
	51-60	F10.4	AFKP

APPENDIX C

CABUOY OUTPUT VARIABLES

Ocean Conditions

Surface Wave

FREQ — Frequency of wave component (hz)

AMPL — Amplitude of wave component (feet)

PHASE — Phase of wave component (degrees)

WL — Wave length of component (1/feet)

WK — Wave number of component (1/feet)

Current Profile

DEPTH — Depth of current data point (feet)
CURR — Current velocity at depth (DEPTH) (knots)

Surface Motion

FREQ < 1000

FREQ — Frequency of surface motion component (hz)

X-A — X amplitude of motion component (ft)

Y-A — Y amplitude of motion component (ft)

PHASE — Phase shift of motion component (both X&Y) (degrees)

2000 < FREQ < 3000

FREQ — Input numbers for FSM - Spar buoy

X-A — Cross sectional area at distance Y-A (ft ²) from origin

Y-A — Position of cross sectional area data point relative to origin (ft).

PHASE — 0

3000< FREQ

FREQ — Input data for FSM (Spheroid)

X-A — Radius of float at waterline (ft) in X-Z plane.

Y-A — Radius of float at waterline (ft) in Y-Z plane.

PHASE — 0

General Cable Characteristics

AM COEFF — Cable Added Mass Coefficient (AMC)
AREA FAC — Cross Sectional Area Correction Factor (AFAC)
T MIN — Minimum tension cable can support (Ibs)

APPENDIX C (Cont'd)

Cable Properties

NUM — Cabie Segment Number

LEN — Length of segment at reference tension (ft)

DIAM — Diameter of segment (in.)

CDN — Coefficient of drag normal to cable

CDT — Coefficient of drag tangent to cable

W — Wet weight of cable (lbs/ft)

M — Mass of cable (slugs/ft)

T — Reference tension of cable (lbs)

CI, EXPC2 Coefficients for stress strain equation $T = c1\epsilon$ C2

CINT — Internal damping coefficient

Body Properties

CDAY — Drag area in X-Z plane (ft²)

CDAX — Drag area in Y-Z plane (ft²)

WT — Wet weight of body (lbs)

XVM — Virtual mass in X direction (slugs)

YVM — Virtual mass in X direction (slugs)

X-Load on BOT-WT = Applied force on lower weight (lbs) (TBH)

Surface Buoy Characteristics

SYVI

WIND LD - Wind loading on surface float (lbs) (TWX) SUBM - Depth at which current acts on surface float (ft) - Drag area of subsurface package in x direction (ft 2) **CDASPX CDASBX** - Drag area of surface float excluding subsurface package in x direction (ft²) **AVSPX** Virtual mass of surface package in \times and y directions (ft 3) AVSPY **MAXTEN** - Maximum tension which can be supported by the cable (lbs) BUOY CALC - variable IBUOY SPAR NUM — Degree of polynomial of spar flat (ISPAR) **CDAY** - Drag area in X-Z plane (ft 2) WT - Weight in air of float (lbs) **RWY** - Vertical distance of wind loading from cg (ft) RTX Distance in x direction of cable attachment point from c_q (ft) **RTY** - Distance in Y direction of cable attachment point from ca (ft) YCG - Submergence of cg below waterline (ft) IN - Moment of inertia of surface float (slugs ft squared) ΧI ZETA - Initial values of χ,ζ,Φ for surface float SYI in feet, feet, degrees XVI ZTVI - Initial velocities of x, ζ, Φ for surface float in feet/sec,

feet/sec., degr 3/sec

APPENDIX C (Cont'd)

Constants for Spar Buoy

Initial Ratio TY = total tension at top of cable plus weight of surface float

PO = p * Surface float displaced volume

$$P1 = \rho \int_{0}^{h} (y-y_{cg}) Sydy$$

$$P2 = \rho \int_{0}^{h} (y-y_{cg})^2 Sydy$$

$$QO = \rho \int_{0}^{h} (y-y_{cg}) e^{-ky} Sydy$$

Q1 =
$$\rho \int_0^h (y-y cg)^2 e^{-ky}$$
 Sydy

WVMZ - Virtual mass of body in heave

- p*g *cross sectional area at the surface **RGSO**

YCB-YCG — Separation of center of buoyancy and center of gravity

EXACT SYI — Steady state pitch angle of float in degrees

APPR SYI - Value of float pitch used in dynamic calculations. May vary

from exact SYI because of cable segment approximations

made in CABUOY

Constants for Spheroidal Buoy

DRAFT - Draft of surface float (ft)

- Cross sectional area at the waterline (ft²)

VOL - Displaced volume of float (ft 3) - Added mass coefficient in surge FKS FKH - Added mass coefficient in heave - Added mass coefficient in pitch FKP

FKPS - Coefficient of coupling between pitch and surge

- Water density * acceleration due to gravity * surface float **RGSO**

cross-sectional area at the waterline

CDAFC - Drag coefficient for submerged portion of the float in X direction

- Submerged drag area of surface assembly

CDASX EXACT SYI - Surface float tilt (see spar buoy)

APPR SYI - Approximate float tilt for dynamic calculations

Iteration

ITN - Iteration number

VCXK System drift velocity (knots)

TIXX - X Component of tension at top of caple (lbs) - Y Component of tension at top of cable (lbs) TIYY

- Tension at bottom weight (lbs) TENB

PHIB - Inclination of cable at bottom relative to vertical (degrees)

- X Component of tension at bottom (lbs) **TBXX TBYY** - Y Component of tension at bottom (lbs)

APPENDIX C (Cont'd)

	XXBB YYBB SYSS	 X Coordinate at bottom of cable (ft) Y Coordinate at bottom of cable (ft) Pitch of surface float (degrees)
Steady State Configu	ıration	
	TIX TIY DIRECTION NODE S REF S STR X Y TEN PHIS	 Tension at top of cable in X direction (lbs) Tension at top of cable in Y direction (lbs) Initial conditions known at top or bottom (DIR) End point of cable segment Distance along reference length of cable (ft) Stretched length of cable (ft) X position of NODE (ft) Y position of NODE (ft) Tension in cable at NODE (lbs) Tilt of cable reference to vertical (degrees)
Cable Initial Condition	ons	
Computer Cable Sys	PHI XV YV stem Motions	 Tilt of cable at NODE (degrees) X Velocity of NODE (ft/sec) Y Velocity of NODE (ft/sec)
	T	- Current time of dynamic data (sec)

X	X Position of body (ft)
Υ	 Y Position of body (ft)
XP	 X Velocity of NODE (ft/sec)
ΥP	Y Velocity of NODE (ft/sec)
XPP	 X Acceleration of NODE (ft/sec²)
YPP	 Y Acceleration of NODE (ft/sec²)
TEN	 Cable Tension (lbs)
FI	 Angle of cable at NODE (degrees)
FIP	 Rate of change of angle (deg/sec)
STRAIN	— Cable strain
STP	- Rate of cable strain (1/sec)
SYPP	 Angular acceleration of float pitch (eg/sec²)
DE	- Surface float draft (ft)

Integration time step (sec)

- Surface float draft (ft) DF

PCT T DFTLIM \ — Percent of time float exceeds draft and PCT T SYDLIM \ Tilt limits

PCT T SYDLIM

ĐΤ

WAVE - Data for surface wave

BUOY - Data for origin of surface float

0 - Data for top of cable segment number 1 1 - Data for bottom of cable segment number 1 2 — Data for bottom of cable segment number 2

Note: Data for bottom of last cable segment is not printed out as point is assumed to be fixed in space

ASW-TYPE REPORT

DISTRIBUTION LIST

REPORT NO. NADC-80174-30

AIRTASK NO. A035-370A/001B/0F11-100-000

Work Unit No. ZU701

	No. of Copies		No. of Copies
CNO, Central Mail Room	12	NUSC, New London	1
(2 for OP-03EG)		NUSC, Newport	1
(1 for OP-098T)		NSRDC	1
(1 for OP-506)		NAVWPNCEN	1
(1 for OP-943C)		NRL	1
(1 for OP-95C)		NAVSURFWPNCEN	1
(1 for OP-951)		NAVAIRTESTCEN, WST Div	1
(1 for OP-952)		NAVPGSCOL	1
(1 for OP-953)		APL, Univ of Wash	1
(1 for OP-962C3)		ARL, Penn State Univ	1
(1 for OP-962D1)		Woods Hole Oceano Inst	1
(1 for OP-981E)		Scripps Inst of Oceano	1
CNM, ASW-00	1	AFSC, SCTS, Andrews AFB	1
CNM, Asw-10	1	IDA, Contract SD-50	1
CNM, ASW-24	1	DDC	2
CNM, ASW-111	1	NAVAIRSYSCOM,	
COMSECFLT	1	AiR-50174	10
COMTHDFLT	1	(2 for retention)	
COMPATWINSLANT	1	(1 for AIR-370)	
COMPATWINSPAC	1	(1 for AIR-503)	
ONR, Code 468	1	(1 for AIR-533)	
COMOPTEVFOR	1	(1 for PMA-240)	
NAVSHIPSYSCOM, Code 2051	1	(1 for PMA-244)	
AIRTEVRON ONE	1	(1 for PMA-256)	
NOSC, San Diego	1	(1 for PMA-264)	
NURDC	. 1	•	

.